Dynamic Bayesian Combination of Multiple Imperfect Classifiers
نویسندگان
چکیده
Classifier combination methods need to make best use of the outputs of multiple, imperfect classifiers to enable higher accuracy classifications. In many situations, such as when human decisions need to be combined, the base decisions can vary enormously in reliability. A Bayesian approach to such uncertain combination allows us to infer the differences in performance between individuals and to incorporate any available prior knowledge about their abilities when training data is sparse. In this chapter we explore Bayesian classifier combination, using the computationally efficient framework of variational Bayesian inference. We apply the approach to real data from a large citizen science project, Galaxy Zoo Supernovae, and show that our method far outperforms other established approaches to imperfect decision combination. We go on to analyse the putative community structure of the decision makers, based on their inferred decision making strategies, and show that natural groupings are formed. Finally we present a dynamic Bayesian classifier combination approach and investigate the changes in base classifier performance over time.
منابع مشابه
Bayesian Combination of Multiple, Imperfect Classifiers
Classifier combination methods need to make best use of the outputs of multiple, imperfect classifiers to enable higher accuracy classifications. In many situations, such as when human decisions need to be combined, the base decisions can vary enormously in reliability. A Bayesian approach to such uncertain combination allows us to infer the differences in performance between individuals and to...
متن کاملCombination of dynamic Bayesian network classifiers for the recognition of degraded characters
We investigate in this paper the combination of DBN (Dynamic Bayesian Network) classifiers, either independent or coupled, for the recognition of degraded characters. The independent classifiers are a vertical HMM and a horizontal HMM whose observable outputs are the image columns and the image rows respectively. The coupled classifiers, presented in a previous study,1 associate the vertical an...
متن کاملCost Analysis of Acceptance Sampling Models Using Dynamic Programming and Bayesian Inference Considering Inspection Errors
Acceptance Sampling models have been widely applied in companies for the inspection and testing the raw material as well as the final products. A number of lots of the items are produced in a day in the industries so it may be impossible to inspect/test each item in a lot. The acceptance sampling models only provide the guarantee for the producer and consumer that the items in the lots are acco...
متن کاملA fuzzy random forest
When individual classifiers are combined appropriately, a statistically significant increase in classification accuracy is usually obtained. Multiple classifier systems are the result of combining several individual classifiers. Following Breiman’s methodology, in this paper a multiple classifier system based on a “forest” of fuzzy decision trees, i.e., a Fuzzy Random Forest, is proposed. This ...
متن کاملLearning Selectively Conditioned Forest Structures with Applications to DNBs and Classification
Dealing with uncertainty in Bayesian Network structures using maximum a posteriori (MAP) estimation or Bayesian Model Averaging (BMA) is often intractable due to the superexponential number of possible directed, acyclic graphs. When the prior is decomposable, two classes of graphs where efficient learning can take place are treestructures, and fixed-orderings with limited in-degree. We show how...
متن کامل